Derivation and comparison of model equations for interfacial capillary-gravity waves in deep water
نویسنده
چکیده
A matched asymptotic expansion is used to give a formal derivation of a number of systems of model equations for the evolution of interfacial waves subject to capillarity. For one of these systems, approximate solitary waves are found numerically, and the solutions are compared to the Benjamin equation which arises in the special case of one-way propagation. © 2006 IMACS. Published by Elsevier B.V. All rights reserved.
منابع مشابه
STABILITY ANALYSIS FROM FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR TWO CAPILLARY GRAVITY WAVE PACKETS IN THE PRESENCE OF WIND OWING OVER WATER.
Asymptotically exact and nonlocal fourth order nonlinear evolution equations are derived for two coupled fourth order nonlinear evolution equations have been derived in deep water for two capillary-gravity wave packets propagating in the same direction in the presence of wind flowing over water.We have used a general method, based on Zakharov integral equation.On the basis of these evolution eq...
متن کاملEFFECT OF COUNTERPROPAGATING CAPILLARY GRAVITY WAVE PACKETS ON THIRD ORDER NONLINEAR EVOLUTION EQUATIONS IN THE PRESENCE OF WIND FLOWING OVER WATER
Asymptotically exact and nonlocal third order nonlinear evolution equations are derivedfor two counterpropagating surface capillary gravity wave packets in deep water in thepresence of wind flowing over water.From these evolution equations stability analysis ismade for a uniform standing surface capillary gravity wave trains for longitudinal perturbation. Instability condition is obtained and g...
متن کاملModels for Interfacial Capillary-Gravity Waves in the Long-Wave Limit
A matched asymptotic expansion is used to give a formal derivation of a system of partial differential equations modeling the evolution of the free interface in a two-fluid system. Under the assumption of one-way propagation, the system is reduced to a single equation. INTRODUCTION The object of this note is the systematic derivation of a number of model equations which are of use in the descri...
متن کاملModel Equations for Gravity-capillary Waves in Deep Water
The Euler equations for water waves in any depth have been shown to have solitary wave solutions when the effect of surface tension is included. This paper proposes three quadratic model equations for these types of waves in infinite depth with a two-dimensional fluid domain. One model is derived directly from the Euler equations. Two further simpler models are proposed, both having the full gr...
متن کاملDynamics of Three-Dimensional Gravity-Capillary Solitary Waves in Deep Water
A model equation for gravity-capillary waves in deep water is proposed. This model is a quadratic approximation of the deep water potential flow equations and has wavepacket-type solitary wave solutions. The model equation supports line solitary waves which are spatially localized in the direction of propagation and constant in the transverse direction, and lump solitary waves which are spatial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematics and Computers in Simulation
دوره 74 شماره
صفحات -
تاریخ انتشار 2007